'Bioluminescent' reporter phage for the detection of Category A bacterial pathogens.
نویسندگان
چکیده
Yersinia pestis and Bacillus anthracis are Category A bacterial pathogens that are the causative agents of the plague and anthrax, respectively. Although the natural occurrence of both diseases' is now relatively rare, the possibility of terrorist groups using these pathogens as a bioweapon is real. Because of the disease's inherent communicability, rapid clinical course, and high mortality rate, it is critical that an outbreak be detected quickly. Therefore methodologies that provide rapid detection and diagnosis are essential to ensure immediate implementation of public health measures and activation of crisis management. Recombinant reporter phage may provide a rapid and specific approach for the detection of Y. pestis and B. anthracis. The Centers for Disease Control and Prevention currently use the classical phage lysis assays for the confirmed identification of these bacterial pathogens. These assays take advantage of naturally occurring phage which are specific and lytic for their bacterial hosts. After overnight growth of the cultivated bacterium in the presence of the specific phage, the formation of plaques (bacterial lysis) provides a positive identification of the bacterial target. Although these assays are robust, they suffer from three shortcomings: 1) they are laboratory based; 2) they require bacterial isolation and cultivation from the suspected sample, and 3) they take 24-36 h to complete. To address these issues, recombinant "light-tagged" reporter phage were genetically engineered by integrating the Vibrio harveyi luxAB genes into the genome of Y. pestis and B. anthracis specific phage. The resulting luxAB reporter phage were able to detect their specific target by rapidly (within minutes) and sensitively conferring a bioluminescent phenotype to recipient cells. Importantly, detection was obtained either with cultivated recipient cells or with mock-infected clinical specimens. For demonstration purposes, here we describe the method for the phage-mediated detection of a known Y. pestis isolate using a luxAB reporter phage constructed from the CDC plague diagnostic phage ΦA1122 (Figure 1). A similar method, with minor modifications (e.g. change in growth temperature and media), may be used for the detection of B. anthracis isolates using the B. anthracis reporter phage Wβ::luxAB. The method describes the phage-mediated transduction of a biolumescent phenotype to cultivated Y. pestis cells which are subsequently measured using a microplate luminometer. The major advantages of this method over the traditional phage lysis assays is the ease of use, the rapid results, and the ability to test multiple samples simultaneously in a 96-well microtiter plate format. Figure 1. Detection schematic. The phage are mixed with the sample, the phage infects the cell, luxAB are expressed, and the cell bioluminesces. Sample processing is not necessary; the phage and cells are mixed and subsequently measured for light.
منابع مشابه
Diagnostic bioluminescent phage for detection of Yersinia pestis.
Yersinia pestis is the etiological agent of the plague. Because of the disease's inherent communicability, rapid clinical course, and high mortality, it is critical that an outbreak, whether it is natural or deliberate, be detected and diagnosed quickly. The objective of this research was to generate a recombinant luxAB ("light")-tagged reporter phage that can detect Y. pestis by rapidly and sp...
متن کاملFormation of therapeutic phage cocktail and endolysin to highly multi-drug resistant Acinetobacter baumannii: in vitro and in vivo study
Objective(s): Phage therapy is a potential alternative treatment for infections caused by Acinetobacter baumannii, a significant nosocomial pathogen, which has evolved resistance to almost all conventional antimicrobial drugs in poor hygiene and conflicts areas such as Iraq. Materials and Methods: Bacteriophages were isolated to highly resistant isolates of A. baumannii to form therapeutic phag...
متن کاملReal-time monitoring of Escherichia coli O157:H7 adherence to beef carcass surface tissues with a bioluminescent reporter.
A method for studying bacteria that are attached to carcass surfaces would eliminate the need for exogenous sampling and would facilitate understanding the interaction of potential human food-borne pathogens with food animal tissue surfaces. We describe such a method in which we used a bioluminescent reporter strain of Escherichia coli O157:H7 that was constructed by transformation with plasmid...
متن کاملThe Use of a Novel NanoLuc -Based Reporter Phage for the Detection of Escherichia coli O157:H7
Rapid detection of the foodborne pathogen Escherichia coli O157:H7 is of vital importance for public health worldwide. Among detection methods, reporter phages represent unique and sensitive tools for the detection of E. coli O157:H7 from food as they are host-specific and able to differentiate live cells from dead ones. Upon infection, target bacteria become identifiable since reporter genes a...
متن کاملComparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models.
Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 53 شماره
صفحات -
تاریخ انتشار 2011